
Introduction Broken Abstractions Memory Management Data and Code References

Software Security

Daniel Bosk1

Department of Information and Communication Systems,
Mid Sweden University, SE-851 70 Sundsvall

software.tex 1999 2014-09-23 11:14:06Z danbos

1This work is licensed under the Creative Commons Attribution-ShareAlike
3.0 Unported license. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/.

1

http://creativecommons.org/licenses/by-sa/3.0/

Introduction Broken Abstractions Memory Management Data and Code References

Overview

1 Introduction
Security and Reliability
Malware
Change in Environment

2 Broken Abstractions
Numbers and Characters
Function Composition

3 Memory Management
Memory Structure
Overruns
Type Confusion

4 Data and Code
Scripting
SQL Injection

2

Introduction Broken Abstractions Memory Management Data and Code References

Overview

1 Introduction
Security and Reliability
Malware
Change in Environment

2 Broken Abstractions
Numbers and Characters
Function Composition

3 Memory Management
Memory Structure
Overruns
Type Confusion

4 Data and Code
Scripting
SQL Injection

3

Introduction Broken Abstractions Memory Management Data and Code References

Security and Reliability

As long as our computer is offline, used only by ourselves, and
we don’t add any accessories (e.g. USB devices [Sch14]), then
we don’t have any problems.
Problems start to occur when other users start using our
software (in some way), then input to our programs isn’t
necessarily what we expect.

4

Introduction Broken Abstractions Memory Management Data and Code References

Security and Reliability

Software reliability concerns software quality in the sense of
accidental failures, i.e. the assumption that input is benign.
Software security concerns software quality in the sense of
intentional failures, i.e. the assumption that input is malign.
We will focus on the latter.

5

Introduction Broken Abstractions Memory Management Data and Code References

Malware

Definition (Malware)

Comes from malicious software and means software with a
malicious intent.

Definition (Computer Virus)

A form of malware which has self-replicating code. It infects other
programs by inserting itself into their program code, and in turn
when these programs are run the virus payload is run to replicate
even further.

Definition (Worm)

A form of malware which replicates itself, not by infection, but by
copying itself to different disks, via networks, or even emailing itself
automatically to everyone in the user’s contact list.

6

Introduction Broken Abstractions Memory Management Data and Code References

Malware

Definition (Trojan Horse)

A form of malware which acts as a legitimate program but has
hidden features which are malicious, e.g. a utility program which
steals your login credentials in the background.

Definition (Logic Bomb)

A form of malware which resides doing nothing until a logical
condition is satisfied, then it executes its malicious code – e.g.
erasing all files etc.

7

Introduction Broken Abstractions Memory Management Data and Code References

Change in Environment

Change is one of the dangers to security.
There are systems which are designed to be secure, and
actually are secure, but then . . .
upgrades are needed, or not needed but wanted.
This might come in the form of updating a component or
utilising the system in an environment it wasn’t designed for.

8

Introduction Broken Abstractions Memory Management Data and Code References

Overview

1 Introduction
Security and Reliability
Malware
Change in Environment

2 Broken Abstractions
Numbers and Characters
Function Composition

3 Memory Management
Memory Structure
Overruns
Type Confusion

4 Data and Code
Scripting
SQL Injection

9

Introduction Broken Abstractions Memory Management Data and Code References

Numbers and Characters

Imagine we want to keep the user in the directory ’’/A/B/C’’.
Our program implements this by taking the name of the input
file as input from the user.
Then to access the file it opens ’’/A/B/C/’’+filename.
What if the user inputs
filename = ’’../../../etc/passwd’’?
Then this would evaluate to opening
/A/B/C/../../../etc/passwd.

10

Introduction Broken Abstractions Memory Management Data and Code References

Numbers and Characters

Fine, we ban the string ’’../’’.
Then what about ’’..%c0%af..’’?

11

Introduction Broken Abstractions Memory Management Data and Code References

Numbers and Characters

All character representations in the computer comes in the
form of different encodings, e.g. UTF-8 encoding.
The decoders might be programmed differently, some takes
into account the errors in different encoders to compensate –
and this can be exploited.
Where the encoding is done can also be exploited.

12

Introduction Broken Abstractions Memory Management Data and Code References

Numbers and Characters

Integer overflows is another problem.
Consider the following example.

1 char buf [128];
2
3 void
4 combine(char *s1 , size_t len1 , char *s2,

size_t len2)
5 {
6 if (len1 + len2 + 1 <= sizeof(buf)) {
7 strncpy(buf , s1 , len1);
8 strncat(buf , s2 , len2);
9 }

10 }

13

Introduction Broken Abstractions Memory Management Data and Code References

Numbers and Characters

Let len2 be very long, say 232 − 1, i.e. len2 = 0xffffffff.
Now we have len1+ len2+ 1 (mod 232) = len1+ 232 − 1+ 1
(mod 232) = len1 (mod 232) < sizeof(buf).

14

Introduction Broken Abstractions Memory Management Data and Code References

Function Composition

The login(1) and rlogin(1) composition bug was found in
Linux and AIX systems which didn’t check the syntax of the
username.
The syntax of login(1) is login [-p] [-h host] [[-f] user].
The syntax of rlogin(1) is rlogin [-l user] machine.
rlogin(1) connects to the machine and runs
login user machine.
However, the user could be chosen to be ”-froot”.

15

Introduction Broken Abstractions Memory Management Data and Code References

Overview

1 Introduction
Security and Reliability
Malware
Change in Environment

2 Broken Abstractions
Numbers and Characters
Function Composition

3 Memory Management
Memory Structure
Overruns
Type Confusion

4 Data and Code
Scripting
SQL Injection

16

Introduction Broken Abstractions Memory Management Data and Code References

Memory Structure

We have the code of the program.
We have some program data.
We have a stack growing downwards.
We have a heap growing upwards.

17

Introduction Broken Abstractions Memory Management Data and Code References

Overruns

Buffer overruns
Stack overruns
Heap overruns
All variables in a program use storage from either the stack or
heap.

18

Introduction Broken Abstractions Memory Management Data and Code References

Overruns

1 int
2 login(void)
3 {
4 char correct_password [] = "swordfish";
5 char user_password [16] = {0};
6
7 printf("user␣password:␣");
8 fscanf("\%s", user_password);
9

10 if (!strcmp(correct_password , user_password
))

11 return 0;
12 return 1;
13 }

19

Introduction Broken Abstractions Memory Management Data and Code References

Type Confusion

There are some problems in object-oriented languages too.
Trick the system to point to a different memory location.
Thus a write using one type actually modifies something
believed to be of another type somewhere else.

20

Introduction Broken Abstractions Memory Management Data and Code References

Overview

1 Introduction
Security and Reliability
Malware
Change in Environment

2 Broken Abstractions
Numbers and Characters
Function Composition

3 Memory Management
Memory Structure
Overruns
Type Confusion

4 Data and Code
Scripting
SQL Injection

21

Introduction Broken Abstractions Memory Management Data and Code References

Scripting

1 cat thefile | mail addresses

What happens with the address foo@bar.org | rm -Rf /?

22

Introduction Broken Abstractions Memory Management Data and Code References

SQL Injection

1 \$sql = "SELECT * FROM client WHERE name =
’\$name ’"

Insert the name Eve’ OR 1=1--.
This will get a totally different meaning.

23

Introduction Broken Abstractions Memory Management Data and Code References

Referenser

[Sch14] David Schneider. “USB Flash Drives Are More Dangerous
Than You Think”. In: IEEE Spectrum (Aug. 2014). URL:
http://spectrum.ieee.org/tech-
talk/computing/embedded-systems/usb-flash-
drives-are-more-dangerous-than-you-think.

24

http://spectrum.ieee.org/tech-talk/computing/embedded-systems/usb-flash-drives-are-more-dangerous-than-you-think
http://spectrum.ieee.org/tech-talk/computing/embedded-systems/usb-flash-drives-are-more-dangerous-than-you-think
http://spectrum.ieee.org/tech-talk/computing/embedded-systems/usb-flash-drives-are-more-dangerous-than-you-think

	Introduction
	Security and Reliability
	Malware
	Change in Environment

	Broken Abstractions
	Numbers and Characters
	Function Composition

	Memory Management
	Memory Structure
	Overruns
	Type Confusion

	Data and Code
	Scripting
	SQL Injection

