Introduction	1
00000	

Operating Systems

Computer Architechture

Security Mechanisms

Reference Monitors

Daniel Bosk¹

Department of Information and Communication Systems, Mid Sweden University, SE-85170 Sundsvall.

refmon.tex 2068 2014-11-03 10:52:07Z danbos

¹This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/. () + ()

Operating Systems

Computer Architechture

Security Mechanisms

- Introduction
 - Inforcing Policies
 - Definitions
 - Placing the Reference Monitor
- 2 Operating Systems
 - OS Integrity
 - Modes of Operation
 - Mechanisms at the Core
- 3 Computer Architechture
 - Overview
 - OPU
 - Memory
 - Interrupts
- 4 Security Mechanisms
 - Segments and Pages
 - Relative Addressing
 - Function Codes

Operating Systems

Computer Architechture

Security Mechanisms

- 1
 - Introduction
 - Inforcing Policies
 - Definitions
 - Placing the Reference Monitor
- 2 Operating Systems
 - OS Integrity
 - Modes of Operation
 - Mechanisms at the Core
- 3 Computer Architechture
 - Overview
 - CPU
 - Memory
 - Interrupts
- 4 Security Mechanisms
 - Segments and Pages
 - Relative Addressing
 - Function Codes

Introduction ••••• Operating Systems

Computer Architechture

Security Mechanisms

Enforcing Policies

- We now have authentication and authorisation.
- But how do we enforce these access controls?
- This is where reference monitors come in.

Operating Systems

Computer Architechture

Security Mechanisms

Definitions

Definition (Trusted Computing Base)

The totality of protection mechanisms within a system which is responsible for enforcing a security policy. A TCB consists of one or more components which together enforces the policy. The ability of the TCB to enforce a policy depends on proper configuration of its security mechanisms and those mechanisms themselves.

Operating Systems

Computer Architechture

Security Mechanisms

Definitions

Definition (Reference Monitor)

Is an abstract concept refering to an abstract machine which mediates all subjects' accesses to objects.

Definition (Security Kernel)

Constitutes hardware, firmware, software of a Trusted Computing Base (TCB) which implement the reference monitor concept. It must mediate all accesses, be protected from modification and be verifiable as correct.

Operating Systems

Computer Architechture

Security Mechanisms

Definitions Schematic of Reference Monitor

Operating Systems

Computer Architechture

Security Mechanisms

Placing the Reference Monitor

- The RM could be implemented in hardware using the microprocessor.
- It could be implemented in the OS kernel, e.g. access control in UNIX-like systems or Windows.
- It could be implemented in the services layer, e.g. database systems or Java Virtual Machine.
- Finally, it could be implemented in the application layer, i.e. security checks in the application code.

Operating Systems

Computer Architechture

Security Mechanisms

- Introduction
 - Enforcing Policies
 - Definitions
 - Placing the Reference Monitor
- 2 Operating Systems
 - OS Integrity
 - Modes of Operation
 - Mechanisms at the Core
- 3 Computer Architechture
 - Overview
 - CPU
 - Memory
 - Interrupts
- 4 Security Mechanisms
 - Segments and Pages
 - Relative Addressing
 - Function Codes

Operating Systems

Computer Architechture

Security Mechanisms

OS Integrity

- One of the tasks of the OS is to prevent unauthorised access to different resources.
- What if the attacker could modify the OS?
- Hence we need protection for the OS, we need to maintain its integrity.

Operating Systems

Computer Architechture

Security Mechanisms

OS Integrity

- Now we have the problem that a user must be able to use the OS.
- But the user shouldn't be able to misuse the OS.
- To help us achieve this we have
 - Modes of Operation, and
 - Controlled Invocation (Restricted Privilege).
- These can be applied on any layer, be it OS or application.

Operating Systems

Computer Architechture

Security Mechanisms

Modes of Operation

- We must be able to distinguish between what the OS executes for itself and what it executes on behalf of the user.
- A mode bit is used to indicate which mode a system is currently in.
- Usually we use only two modes, user mode and kernel mode.
- This way we can limit the possibility of execution.

Operating Systems

Computer Architechture

Security Mechanisms

Modes of Operation

- One problem we have now is to allow a user to invoke the privileged operations in the operating system.
- Clearly just flipping the mode bit wouldn't work, that way the user can do anything.
- So, we want to be able to flip the mode bit under certain circumstances only – and also flip it back before returning to the user.
- This is called *controlled invocation*.

Operating Systems

Computer Architechture

Security Mechanisms

Mechanisms at the Core

- Placing mechanisms at the core will allow us higher level of assurance.
- Security mechanisms can be bypassed from the layer below.
- A more complex system gives less assurance.
- Mechanisms at the core can decrease overheads which decrease performance.

Operating Systems

Computer Architechture

Security Mechanisms

- Introduction
 - Enforcing Policies
 - Definitions
 - Placing the Reference Monitor
- 2 Operating Systems
 - OS Integrity
 - Modes of Operation
 - Mechanisms at the Core
- 3 Computer Architechture
 - Overview
 - OPU
 - Memory
 - Interrupts
 - 4 Security Mechanisms
 - Segments and Pages
 - Relative Addressing
 - Function Codes

Operating Systems

Computer Architechture

Security Mechanisms

Operating Systems

Computer Architechture

Security Mechanisms

CPU

- Registers, such as
 - program counter,
 - stack pointer,
 - status register (state information).
- ALU which executes instructions.

Operating Systems

Computer Architechture $\circ \circ \bullet \circ \circ$

Security Mechanisms

Memory

- RAM
- ROM
- EPROM (erasable, programmable)
- WROM (write once)

Operating Systems

Computer Architechture $\circ \circ \circ \circ \circ$

Security Mechanisms

Memory

- Volatile memory fades, not vanishes.
- Non-volatile.

Operating Systems

Computer Architechture

Security Mechanisms

Interrupts

- Uses the interrupt vector to see at what address to start execution, where the interrupt handler is located.
- Can be pointed to some other code?

Operating Systems

Computer Architechture

Security Mechanisms

- 1 Introduction
 - Enforcing Policies
 - Definitions
 - Placing the Reference Monitor
- 2 Operating Systems
 - OS Integrity
 - Modes of Operation
 - Mechanisms at the Core
- 3 Computer Architechture
 - Overview
 - CPU
 - Memory
 - Interrupts
- ④ Security Mechanisms
 - Segments and Pages
 - Relative Addressing
 - Function Codes

Operating Systems

Computer Architechture

Security Mechanisms

Segments and Pages

- Divide memory into logical units, good for security but more difficult.
- Divide memory into pages of equal length, efficient but more difficult for access control.

Operating Systems

Computer Architechture

Security Mechanisms

Segments and Pages

• Can use the page faults as a covert channel.

Operating Systems

Computer Architechture

Security Mechanisms

Relative Addressing

• Use a base and a limit register to limit the address space.

Operating Systems

Computer Architechture

Security Mechanisms

Function Codes

- The Motorola 68000 supported function codes for all addresses.
- This system included separation of user data, user code, kernel data, kernel code.

Operating Systems

Computer Architechture

Security Mechanisms

Referenser

