Transport Layer Security

Lennart Franked

Department of Information and Communication Systems (ICS), Mid Sweden University, Sundsvall.

2014-10-27

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 1 / 40

4 3 4 3 4 3 4

Overview

1 Web Security

• Web Security Considerations

2 SSL/TLS

- SSL Secure Socket Layer
- TLS Transport Layer Security

3 Applications

- HTTPS
- SSH

▶ ∢ ≣

Literature

The lecture covers chapter 6 "Transport-level Security" in [1]. To make sure you have fully understood the chapter, you should solve problems 6.1, 6.2 and 6.3 in [1].

• The web is a client/server system.

- Easy to use, easy to develop and easy to setup.
- Complex software.
- Vulnerable to exploits.
- Easy to exploit users.

(3)

• The web is a client/server system.

- Easy to use, easy to develop and easy to setup.
- Complex software.
- Vulnerable to exploits.
- Easy to exploit users.

글 🖌 🖌 글

- The web is a client/server system.
- Easy to use, easy to develop and easy to setup.

• Complex software.

- Vulnerable to exploits.
- Easy to exploit users.

(B)

- The web is a client/server system.
- Easy to use, easy to develop and easy to setup.
- Complex software.
- Vulnerable to exploits.
- Easy to exploit users.

(3)

- The web is a client/server system.
- Easy to use, easy to develop and easy to setup.
- Complex software.
- Vulnerable to exploits.
- Easy to exploit users.

Threats on the web

Web Security Considerations

	Threats	Consequences	Countermeasures
Integrity	 Modification of user data Trojan horse browser Modification of memory Modification of message traffic in transit 	•Loss of information •Compromise of machine • <u>Vulnerabilty</u> to all other threats	Cryptographic checksums
Confidentiality	•Eavesdropping on the net •Theft of info from server •Theft of data from client •Info about network configuration •Info about which client talks to server	•Loss of information •Loss of privacy	Encryption, Web proxies
Denial of Service	•Killing of user threads •Flooding machine with bogus requests •Filling up disk or memory •Isolating machine by DNS attacks	•Disruptive •Annoying •Prevent user from getting work done	Difficult to prevent
Authentication	•Impersonation of legitimate users •Data forgery	•Misrepresentation of user •Belief that false information is valid	Cryptographic techniques

Figure : A Comparison of Threats on the Web[1]

Lennart Franked (MIUN IKS)

イロト イポト イヨト イヨト

Security facilities in the TCP/IP protocol stack $_{\rm Web\ Security\ Considerations}$

(a) Network Level

(b) Transport Level

(c) Application Level

イロト イヨト イヨト イヨト

Figure : Relative location of security facilities in the TCP/IP protocol stack [1]

Lennart Franked (MIUN IKS)

Overview

2 SSL/TLS

- SSL Secure Socket Layer
- TLS Transport Layer Security

HTTPS SSH

(B)

• A widely used security service

- General purpose service implemented as a set of protocols relying on TCP.
- Part of underlying Protocol Suit
 - Transparent to applications.
- Embedded in specific packages, such as web browsers.

∃ > < ∃</p>

- A widely used security service
- General purpose service implemented as a set of protocols relying on TCP.
- Part of underlying Protocol Suit
 - Transparent to applications.
- Embedded in specific packages, such as web browsers.

(B)

- A widely used security service
- General purpose service implemented as a set of protocols relying on TCP.

• Part of underlying Protocol Suit

- Transparent to applications.
- Embedded in specific packages, such as web browsers.

글 🖌 🖌 글

- A widely used security service
- General purpose service implemented as a set of protocols relying on TCP.
- Part of underlying Protocol Suit
 - Transparent to applications.
- Embedded in specific packages, such as web browsers.

글 🕨 🖌 글

- A widely used security service
- General purpose service implemented as a set of protocols relying on TCP.
- Part of underlying Protocol Suit
 - Transparent to applications.
- Embedded in specific packages, such as web browsers.

(B)

SSLv3 SSL – Secure Socket Layer

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР			
SSL Record Protocol						
ТСР						
IP						

Figure : SSL protocol stack[1]

Lennart Franked (MIUN IKS)

2014-10-27 9 / 40

イロト イロト イヨト イヨト

Mittuniversitetet

Session

• An association between a client and a server.

- Created by the handshake protocol.
- Defines a set of cryptographic security parameters.
- Shared amongst several connections.
- Avoids expensive negotiations.

글 🕨 🖌 글

Session

- An association between a client and a server.
- Created by the handshake protocol.
- Defines a set of cryptographic security parameters.
- Shared amongst several connections.
- Avoids expensive negotiations.

Lennart Franked (MIUN IKS)

Session

- An association between a client and a server.
- Created by the handshake protocol.
- Defines a set of cryptographic security parameters.
- Shared amongst several connections.
- Avoids expensive negotiations.

Session

- An association between a client and a server.
- Created by the handshake protocol.
- Defines a set of cryptographic security parameters.
- Shared amongst several connections.
- Avoids expensive negotiations.

Session

- An association between a client and a server.
- Created by the handshake protocol.
- Defines a set of cryptographic security parameters.
- Shared amongst several connections.
- Avoids expensive negotiations.

SSL Connection SSL – Secure Socket Layer

Connection

• A transport that provides a suitable type of service.

- Transient.
- Every connection is associated with one session.

SSL Connection SSL – Secure Socket Layer

Connection

• A transport that provides a suitable type of service.

Transient.

• Every connection is associated with one session.

Lennart Franked (MIUN IKS)

Transport Layer Security

< 3 > < 3

SSL Connection SSL – Secure Socket Layer

Connection

- A transport that provides a suitable type of service.
- Transient.
- Every connection is associated with one session.

- 🔹 🗐

SSL Record Protocol SSL – Secure Socket Layer

Services

- Confidentiality
- Message Integrity

Lennart Franked (MIUN IKS)

・ロト ・聞ト ・ヨト ・ヨト

SSL Record Protocol SSL – Secure Socket Layer

Services

- Confidentiality
- Message Integrity

Lennart Franked (MIUN IKS)

・ロト ・聞ト ・ヨト ・ヨト

SSL Record Protocol II SSL – Secure Socket Layer

Figure : SSL Record protocol[1]

Lennart Franked (MIUN IKS)

2014-10-27 13 / 40

イロト イポト イヨト イヨト

SSLv3 MAC SSL – Secure Socket Layer

```
hash(MAC_write_secret || pad_2 ||
hash(MAC_write_secret || pad1 || seq_num ||
SSL_Compressed.type || SSLCompressed.length ||
SSLCompressed.fragment))
```


(日) (周) (日) (日)

Supported algorithms SSL – Secure Socket Layer

Block (Cipher	Stream Cipher		
Algorithm	Key size	Algorithm	Key Size	
AES	128,256	RC-40	40	
IDEA	128	RC-128	128	
RC2-40	40			
DES-40	40			
DES	56			
3DES	168			
Fortezza	80			

Lennart Franked (MIUN IKS)

イロト イポト イヨト イヨト

Change Cipher Spec Protocol SSL – Secure Socket Layer

• Used for changing the pending state to current state.

• Contains a single byte with the value 1.

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 16 / 40

Change Cipher Spec Protocol SSL – Secure Socket Layer

- Used for changing the pending state to current state.
- Contains a single byte with the value 1.

Alert Protocol SSL – Secure Socket Layer

- Used to send alerts to the peer.
- Message is encrypted and optionally compressed.
- Two bytes Severity and Alert

Lennart Franked (MIUN IKS)

Alert Protocol SSL – Secure Socket Layer

- Used to send alerts to the peer.
- Message is encrypted and optionally compressed.
- Two bytes Severity and Alert

Alert Protocol SSL – Secure Socket Layer

- Used to send alerts to the peer.
- Message is encrypted and optionally compressed.
- Two bytes Severity and Alert

Alert Protocol II SSL – Secure Socket Layer

• Severity

- Warning Session is still running.
- Fatal Session is closed.
- Alert
 - ► Type of alert

• Severity

- Warning Session is still running.
- Fatal Session is closed.
- Alert
 - Type of alert

• Severity

- Warning Session is still running.
- Fatal Session is closed.
- Alert
 - ► Type of alert

Lennart Franked (MIUN IKS)

2014-10-27 18 / 40

• Severity

- Warning Session is still running.
- Fatal Session is closed.
- Alert
 - ► Type of alert

• Severity

- Warning Session is still running.
- Fatal Session is closed.
- Alert
 - Type of alert

Lennart Franked (MIUN IKS)

2014-10-27 18 / 40

SSL Handshake protocol SSL – Secure Socket Layer

Figure : Handshake Protocol Action[1]

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 19 / 40

イロト イポト イヨト イヨト

Generating Cryptographic Parameters SSL – Secure Socket Layer

```
master_secret = MD5(pre_master_secret || SHA('A' ||
pre_master_secret || ClientHello.random ||
ServerHello.random))||
MD5(pre_master_secret || SHA('BB' ||
pre_master_secret || ClientHello.random ||
ServerHello.random))||
MD5(pre_master_secret || SHA('CCC' ||
pre_master_secret || ClientHello.random ||
ServerHello.random))
```


Generating key block SSL – Secure Socket Layer

```
Key_block =
MD5(master_secret || SHA('A' || master_secret ||
ServerHello.random || ClientHello.random)) ||
MD5(master_secret || SHA('BB' || master_secret ||
ServerHello.random || ClientHello.random)) ||
MD5(master_secret || SHA('CCC' || master_secret ||
ServerHello.random || ClientHello.random))
```


< □ > < □ > < □ > < □ > < □ > < □ >

Transport Layer Security TLS – Transport Layer Security

• An IETF standardization of SSL.

• Defined in RFC 5246[2]

Lennart Franked (MIUN IKS)

Transport Layer Security TLS – Transport Layer Security

• An IETF standardization of SSL.

• Defined in RFC 5246[2]

Lennart Franked (MIUN IKS)

Transport Layer Security

TLS MAC TLS - Transport Layer Security

```
hash(MAC_write_secret ⊕ pad2 ||
hash((MAC_write_secret ⊕ pad1) || seq_num ||
TLSCompressed.type || TLSCompressed.version ||
TLSCompressed.length || TLSCompressed.fragment)
)
```


(日) (周) (日) (日)

TLS Key generation TLS – Transport Layer Security

Figure : TLS key generation[1]

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 24 / 40

• • = • • = •

< A

Mittuniversitetet

Overview

1 Web Security

• Web Security Considerations

2 SSL/TLS

- SSL Secure Socket Layer
- TLS Transport Layer Security

▶ < 프 ► < 프 ►</p>

< 行い

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

URL of the requested document

Contents of the document

- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

• HTTPS uses either SSL or TLS

• Following elements are encrypted.

- URL of the requested document
- Contents of the document
- Contents of browser forms
- Cookies
- Content of HTTP header

Lennart Franked (MIUN IKS)

Image: Image:

2014-10-27 26 / 40

• A protocol used for secure remote communications.

- Designed to be simple and inexpensive.
- Initially meant to replace TELNET and other remote login schemes.
- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

 Mittuniversitetet

 MIS SHORM UNITERSITY

 ▲ Ξ → ▲ Ξ → Ξ → Q へ へ

 2014-10-27
 27 / 40

• A protocol used for secure remote communications.

Designed to be simple and inexpensive. •

- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

- A protocol used for secure remote communications.
- Designed to be simple and inexpensive.
- Initially meant to replace TELNET and other remote login schemes.
- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

- A protocol used for secure remote communications.
- Designed to be simple and inexpensive.
- Initially meant to replace TELNET and other remote login schemes.
- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

- A protocol used for secure remote communications.
- Designed to be simple and inexpensive.
- Initially meant to replace TELNET and other remote login schemes.
- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

- A protocol used for secure remote communications.
- Designed to be simple and inexpensive.
- Initially meant to replace TELNET and other remote login schemes.
- Provides file transfers, tunneling et cetera.
- Server / Client
- Consists of three protocols

Protocol Stack

	SSH User Authentication Protocol Authenticates the client-side user to the server.	SSH Connection Protocol Multiplexes the encrypted tunnel into several logical channels.
	SSH Transport Layer Protocol Provides server authentication, confidentiality, and integrity. It may optionally also provide compression.	
	TCP Transmission control protocol provides reliable, connection- oriented end-to-end delivery.	
	IP Internet protocol provides datagram delivery across multiple networks.	

Figure : SSH Protocol Stack [1]

Lennart Franked (MIUN IKS)

イロト イポト イヨト イヨト

• Directly above transport layer.

- Based on the server possessing a public/private key pair.
- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

• Directly above transport layer.

• Based on the server possessing a public/private key pair.

- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

Transport Layer Protocol ssн

- Directly above transport layer.
- Based on the server possessing a public/private key pair.
- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

- Directly above transport layer.
- Based on the server possessing a public/private key pair.
- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

A B > A B >

- Directly above transport layer.
- Based on the server possessing a public/private key pair.
- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

A B > A B >

- Directly above transport layer.
- Based on the server possessing a public/private key pair.
- Can have multiple host keys using different asymmetric encryption schemes.
- Multiple hosts may share the same key.
- The server host key is used during key exchange to authenticate the host.
- Client must possess the servers public key before a secure connection can be set up.

$\begin{array}{l} \text{Servers public key trust level} \\ \text{ssh} \end{array}$

Local database

- Client stores the public key in a local database.
- Associates the public key based on host name.
- Problems?

(B)

$\begin{array}{l} \text{Servers public key trust level} \\ \text{ssh} \end{array}$

Local database

- Client stores the public key in a local database.
- Associates the public key based on host name.
- Problems?

(B)

$\begin{array}{l} \text{Servers public key trust level} \\ \text{ssh} \end{array}$

Local database

- Client stores the public key in a local database.
- Associates the public key based on host name.
- Problems?

(3)

Servers public key trust level II $_{\rm SSH}$

Using a CA

- Use a trusted CA.
- host name to key association.
- Only need to store and trust the CA public key.
- Problems?

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Servers public key trust level II $_{\rm SSH}$

Using a CA

- Use a trusted CA.
- host name to key association.
- Only need to store and trust the CA public key.
- Problems?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Servers public key trust level II $_{\rm SSH}$

Using a CA

- Use a trusted CA.
- host name to key association.
- Only need to store and trust the CA public key.
- Problems?

< ∃ > < ∃

Servers public key trust level II $_{\rm SSH}$

Using a CA

- Use a trusted CA.
- host name to key association.
- Only need to store and trust the CA public key.
- Problems?

Lennart Franked (MIUN IKS)

→ ∃ → → ∃ →

Packet Exchange ssн

Figure : SSH Transport Layer Packet Exchange[1]

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 32 / 40

・ロト ・聞ト ・ヨト ・ヨト

• Used to authenticate the client to the server.

- Three authentication methods
 - Public key
 - Password
 - Hostbased

• Used to authenticate the client to the server.

• Three authentication methods

- Public key
- Password
- Hostbased

< AP

• Used to authenticate the client to the server.

• Three authentication methods

- Public key
- Password
- Hostbased

< A

Mittuniversitetet

• Used to authenticate the client to the server.

• Three authentication methods

- Public key
- Password
- Hostbased

< A

• Used to authenticate the client to the server.

• Three authentication methods

- Public key
- Password
- Hostbased

Mittuniversitetet

• Runs on top of the SSH Transport Layer Protocol.

- Assumes that a secure authentication connection (tunnel) is in use.
- Allows multiplexing a number of logical channels.

- Runs on top of the SSH Transport Layer Protocol.
- Assumes that a secure authentication connection (tunnel) is in use.
- Allows multiplexing a number of logical channels.

- Runs on top of the SSH Transport Layer Protocol.
- Assumes that a secure authentication connection (tunnel) is in use.
- Allows multiplexing a number of logical channels.

Channel mechanism

- Communication using SSH are supported using separate channels.
- Server or Client can open a channel.
- For each channel, each side associates a unique channel number.
- Channels are flow controlled using a window mechanism
- A channel progresses through the steps: Opening, data transfer, closing.

Channel mechanism

- Communication using SSH are supported using separate channels.
- Server or Client can open a channel.
- For each channel, each side associates a unique channel number.
- Channels are flow controlled using a window mechanism
- A channel progresses through the steps: Opening, data transfer, closing.

< 3 > 4 3

Channel mechanism

- Communication using SSH are supported using separate channels.
- Server or Client can open a channel.
- For each channel, each side associates a unique channel number.
- Channels are flow controlled using a window mechanism
- A channel progresses through the steps: Opening, data transfer, closing.

Channel mechanism

- Communication using SSH are supported using separate channels.
- Server or Client can open a channel.
- For each channel, each side associates a unique channel number.
- Channels are flow controlled using a window mechanism
- A channel progresses through the steps: Opening, data transfer, closing.

< 3 > < 3</p>

Channel mechanism

- Communication using SSH are supported using separate channels.
- Server or Client can open a channel.
- For each channel, each side associates a unique channel number.
- Channels are flow controlled using a window mechanism
- A channel progresses through the steps: Opening, data transfer, closing.

Figure : SSH Connection Protocol[1]

Lennart Franked (MIUN IKS)

Transport Layer Security

2014-10-27 36 / 40

イロト イヨト イヨト イヨト

Four channel types used in SSH Connection Protocols

- Session Remote execution of a program, such as shell, file transfer, et cetera.
- X11 X window system
- forwarded-tcpip Remote port forwarding
- direct-tcpip Local port forwarding

< 3 > < 3</p>

Four channel types used in SSH Connection Protocols

- Session Remote execution of a program, such as shell, file transfer, et cetera.
- X11 X window system
- forwarded-tcpip Remote port forwarding
- direct-tcpip Local port forwarding

< 3 > < 3</p>

Four channel types used in SSH Connection Protocols

- Session Remote execution of a program, such as shell, file transfer, et cetera.
- X11 X window system
- forwarded-tcpip Remote port forwarding

direct-tcpip – Local port forwarding

(B)

Four channel types used in SSH Connection Protocols

- Session Remote execution of a program, such as shell, file transfer, et cetera.
- X11 X window system
- forwarded-tcpip Remote port forwarding
- direct-tcpip Local port forwarding

(B)

Port Forwarding ssн

Converts any insecure TCP connection into a secure SSH connection.

Local forwarding

- Allows the client to redirect traffic through an SSH connection.
- Listen on a local port and forwards all traffic through an SSH tunnel

Remote forwarding

Client acts on the servers behalf

Dynamic forwarding

SSH acts as a SOCKS-proxy.

Port Forwarding ssн

Converts any insecure TCP connection into a secure SSH connection.

Local forwarding

• Allows the client to redirect traffic through an SSH connection.

• Listen on a local port and forwards all traffic through an SSH tunnel

Remote forwarding

Client acts on the servers behalf

Dynamic forwarding

SSH acts as a SOCKS-proxy.

Port Forwarding SSH

Converts any insecure TCP connection into a secure SSH connection.

Local forwarding

- Allows the client to redirect traffic through an SSH connection.
- Listen on a local port and forwards all traffic through an SSH tunnel

Remote forwarding

Client acts on the servers behalf

Dynamic forwarding

SSH acts as a SOCKS-proxy.

Port Forwarding SSH

Converts any insecure TCP connection into a secure SSH connection.

Local forwarding

- Allows the client to redirect traffic through an SSH connection.
- Listen on a local port and forwards all traffic through an SSH tunnel

Remote forwarding

Client acts on the servers behalf

Dynamic forwarding

SSH acts as a SOCKS-proxy.

Overview

1 Web Security

• Web Security Considerations

2 SSL/TLS

- SSL Secure Socket Layer
- TLS Transport Layer Security

Applications HTTPS

- SSH

イロト イヨト イヨト イヨト

References

- William Stallings. Network security essentials : applications and standards. 5th ed. International Edition. Pearson Education, 2013. ISBN: 978-0-273-79336-6.
- [2] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard). Updated by RFCs 5746, 5878, 6176. Internet Engineering Task Force, Aug. 2008. URL: http://www.ietf.org/rfc/rfc5246.txt.

• • = • • = •